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Abstract

This describes an enhancement of the weak blocks idea to create a system capable
of merging multiple weak blocks, hereby termed delta blocks. It describes in detail
the workings of the proposed scheme, its benefits and its limits and finishes with a
detailed simulation and prototype implementation that are both being made available
with the publication of this document.
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1 Introduction

One of the areas where there is a perceived need for improvement in Bitcoin is its ability
to do safe, quick confirmations of transfers. This is the so-called instant transactions
problem. The Bitcoin Cash (BCH) blockchain is referred to simply as Bitcoin throughout
this document.

The author has worked on ways to improve instant confirmation security before, such
as the Zero Confirmation Forfeit (ZCF) scheme[5] and believes that this approach, viable
since the introduction of the OP CHECKDATASIG/-VERIFY opcode, in conjunction
with other proposed schemes such as Double Spend Proofs[4] is actually good enough to
solve almost all needs for safe instant transactions in Bitcoin, especially for the common
case of its use as a daily payment/transaction system of relatively small amounts. It
would get us most of what we might need. It only needs some infrastructure work to
make it transparent to the average user.

However, there are more comprehensive and general proposals trying to address the
instant confirmation problem: At the Instant Transactions Workshop in Italy where
ZCF was initially presented, a first preliminary look at the Avalanche pre-consensus
system was presented as well[7, 8]. Resonance regarding Avalanche was positive, though
with the impression that more time needed for analysis by many, as it touched a lot of
critical areas. For instance, how Avalanche with its own consensus mechanism would
interact with the existing POW system had not been sufficiently explored. One major
problem that cropped up later if relying on past POW for deciding on blocks through
Avalanche, and implementing Avalanche as a proper enforced (soft) fork, is that this could
allow someone who has the resources to temporarily overpower the hash power of the
network (something that has been demonstrated as a currently realistic concern during
the November 2018 split) take the network over through the Avalanche mechanism.

After further thought, this hints at there being a fundamental problem with any
preconsensus scheme that does not rely on the very same consensus mechanism as Bitcoin
right now: Current POW.

It is certainly good to see that some proponents of Avalanche see this problem with
past POW now[1] and it is a sign that those working on BCH are aware of and working
in line with the overall incentive system of Bitcoin. Now, there may be ways to fix
Avalanche with a different consensus scheme that appears not as directly gameable or
less gameable than past POW. But this failure motivates one to look for alternative
solutions to the instant confirmation problem.

It seems especially worthwhile to explore the idea of weak blocks further, as any
scheme that uses current POW very naturally leads to weak blocks as the solution of the
instant confirmation problem. Bitcoin is steered by POW, and if one does not want to
change its overall structure and incentive system, partial solutions to the POW problem
are the natural way to get faster responses from the system.

In the past, the author has worked on implementing the weak blocks scheme as
envisioned by Peter Rizun[9] as a pull request to the Bitcoin Unlimited full node
implementation[6].

One criticism directed at weak blocks is that without a consensus level enforcement of
weak block validity, the remaining incentives (of better network propagation) are going to
be too weak to be followed by miners for reliable instant transactions. Another criticism
directed at weak blocks is that the weak block emission time is limited to something on
the order of dozens of seconds, if one wants to avoid the mutual orphaning chaos caused
by faster emission times. This rate however, is too slow to be really useful for the instant
transaction regime.
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To address these two more major concerns, an update to the weak blocks idea is
therefore proposed. This update is named Delta blocks. Realizing the need for a catchy
name and being inspired by Avalanche as a weather phenomenon in the most abstract
sense, I hereby name the overall application of delta blocks to Bitcoin the Storm system.

2 Acknowledgements

First, I want to make it very clear that I did not invent the idea of merging weak blocks.
For reference, the github user duzy (Duzy Chan) has pointed to this idea in my original
pull request for weak blocks to the BitcoinUnlimited implementation1.

Reddit user cryptocached was to my knowledge one of the first to clearly articulate
and point out the problems with relying on past-POW in Avalanche, the problem which
motivated to take a second look at my former weak blocks work.

What I merely claim is having thought this through in the context of Bitcoin’s POW
system, working it out in detail and maybe adding an original thought here and there.
Perhaps I also should have done a more thorough literature review as there might be
parallel developments in other coins. Pointers to relevant other work and constructive
input are very welcome!

Special thanks go to Josh Ellithorpe, Peter Rizun, Andrew Stone, Andrea Suisani
and Peter Tschipper for valuable input, review, fixes and clarifications.

I also like to thank Bitcoin Unlimited for some of the computational resources used
for the preliminary full node test in Section 6.

1 See https://github.com/BitcoinUnlimited/BitcoinUnlimited/pull/856#

issuecomment-351266248
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3 Overview

In the bird’s eye view, delta blocks differ from weak blocks in one key aspect. Instead of
having a single ancestor, like weak blocks do, they refer to any number of compatible
blocks as ancestors, and result in the merging of the transaction sets of these compatible
ancestors. On top of this merged set, a delta set of transactions is added, giving the
blocks their name. Once deltablocks are implemented, they would cause a (relative)
storm of deltablocks in the network, underlining the appropropiateness of the naming for
the overall approach.

In the following sections, the specification of delta blocks and the thoughts that lead
to them will be detailed. It will be too informal to be considered a definite specification,
but it can certainly serve as the basis for that. Followed by this is a simulation of the
supposed properties of delta block to make the case for them, which precedes a look at
the prototype implementation made available with the publication of this document as a
pull request to Bitcoin Unlimited.

3.1 Weak block

A weak block is a Bitcoin block that has less than the full POW required to be considered
a valid (Strong) block by the Bitcoin network. Due to the nature of proof-of-work
calculations, weak blocks are an unavoidable side product of mining for strong blocks,
as partial solutions to the POW problem will appear with a frequency that depends
inversely on the strength of the POW that a a weak block must meet. As they are
a side product they cost the miners chasing a strong block nothing except additional
communication to publish them to the network. This ties weak blocks intimately to the
strong blocks which are part of the foundation of Bitcoin’s incentive system. Producing
weak and strong blocks is essentially one and the same operation and they are inseparable
from each other.

A weak block in the sense of Rizun’s paper can be tweaked to have a single link to
its weak parent, which could be placed in the coinbase such as done in [6]. This refers
to the parent weak block plus the differential of transactions that has been added since
the last weak block, thus cutting down on network bandwidth and giving the miners an
incentive to implement and follow them. It also allows to more easily identify the chains
of weak blocks building on top of each other, allowing to easily implement the necessary
notion of longest chain of weak proof of work.

It should be noted that a block being weak and a block having a link to the weak
parent are orthogonal properties of blocks. If a miner finds a strong block in a weak
blocks-enabled Bitcoin and mines using such a coinbase link, the strong block will also
benefit from this differential transmission scheme.

Weak blocks of this kind have the downside that since the weak blocks are generated
in parallel in the network, proof of work (POW) is going to be wasted in the weak block
that will not make it into the weak blocks chain. This, however, can largely be remedied
by going from the tree-like structure of weak blocks to a full directed acyclic graph
(DAG) based approach:

3.2 Delta block

A delta block is defined to be a data structure that contains a block header, a set of
weak ancestors and a set of transactions named the delta set. The POW in the header
can be weak or strong.
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In the current implementation, this set of ancestors is stored in the coinbase in the
form of OP RETURN data containing the weak ancestor block hash pointers.

It should be prominently noted that this set of ancestors is different to the
hashPrevBlock pointer that is in the block header and refers to the previous strong
block! The hashPrevBlock hash, other than being required to match for a given delta
block, has no further bearing on the delta/weak blocks logic and is therefore mostly
ignored in the discussion here.

Network representation The name net(work) delta block refers to the representation
of the change set of an individual delta block on the network, which is optimized for
transmission by leveraging the Graphene set reconciliation protocol available in BU.

3.3 Merged block

A delta block can be assembled from all its direct and indirect ancestors into a weak or
strong block with a CBlock-like structure. This is done by merging the transactions from
all referenced ancestors into a single set, dropping duplicates. The merkle root in the
delta block’s header corresponds to this merged transaction set. The resulting Bitcoin
block is hereby aptly named the merged block. The coinbase from the most recent (tip)
delta block is taken as the merged block’s coinbase, and all other coinbase transactions
are dropped.

It is required that the delta set contains neither duplicates with any of the referenced
ancestors nor double-spends. It is also required that different delta blocks are compatible
with each other, meaning that they might refer to the same transaction multiple times,
but do not contain any doublespends.

Fig. 1 shows this relationship between delta blocks, merged blocks and their CBlock-
compatible representation in Bitcoin.

Delta block 1 (DB1)
Delta set:

CB1, TX1, TX2, TX3

Delta block 2 (DB2)
Delta set:

CB2, TX1, TX2, TX4

Delta block 3 (DB3)
Delta set:

CB3, TX5, TX6

Weak ancestors

Merged block
corresponding to DB3

Transaction set:
CB3, TX1, TX2, TX3, TX4, TX5, TX6

Figure 1: Simple exemplary scenario showing two concurrently mined delta blocks DB1,
DB2 being referenced by delta block DB3 and the resulting merged block(s).

With CTOR transaction ordering being active on the BCH blockchain, the method
of merging transaction is fixed and does not need to be further specified in this context,
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however for further discussion on this topic, see below.

On set removal It should be noted that it does not make sense to implement any
scheme that would allow operations that undo or remove transactions in weak block
descendants. The Bitcoin miners operate a distributed time-stamping system, and
one cannot unwitness the existence of a formerly confirmed and otherwise referenced
transaction hash. The definition of delta blocks assumes that it makes sense to allow
for independent duplicate confirmation of the same fact but not retracting former
confirmations of a fact.

3.4 Longest weak chain

Weak blocks needed a notion of longest chain which is a straight forward extension of the
strong blocks POW concept, with the caveat that there is no difficulty adjustment within
a weak blocks chain (from strong to strong block) and thus each weak POW (WPOW)
can be considered a unit of the same one POW for longest chain measurement purposes,
equating the concepts of longest chain and greatest difficult in this context.

For any (upwards-pointing) tree of delta blocks in the delta blocks DAG, the total
WPOW (of a merged block) is calculated as the size of the set of all nodes that are direct
or indirect ancestors of the delta block in question, not counting repeat delta blocks and
requring that all delta blocks cross a minimum WPOW threshold. In other words, it is
the cardinality of the tree set referred to by the respective tip. Fig. 2 illustrates this in
more detail.

3.5 Longest chain and miner selection

The above definition will naturally result in zero or more delta blocks that have a longest
chain property in the sense of belonging to the set of delta blocks that have maximum
WPOW. Those are the delta block chain tips (in short: delta tips), with the quite likely
situation of there being competing delta tips of same WPOW. It is assumed henceforth
that the delta blocks discussed here are built on the same strong block chain fork and
therefore have the same hashPrevBlock. Note that delta tips for multiple strong block
chain forks can be tracked.

A miner that wants to start mining using delta blocks can pick any of the delta tips
known to him (or start from scratch from the last strong block), merge them into a
new delta block template, set the delta set to the transactions he wants to additionally
include and start looking for solutions to the POW puzzle.

3.6 POW measurement and potential consensus rule changes

To address the other main concern with regular weak blocks from above, which is the
lack of incentives to follow and build them, it is hereby proposed to change the POW
measurement rule in Bitcoin from the chain of most cumulative strong POW to one
where weak POW is used to break the tie of a strong block race by selecting the chain
which has more WPOW in that situation.

If delta blocks are preferred in this way, a miner has an interest to select and merge
those delta tips that will make the resulting mined weak block the longest chain in the
above WPOW chain length metric. A miner furthermore has an incentive to share his
(or her) weak block as it will make sure that the network tends towards his (or her)
reading of the situation in case there are conflicting transactions. As s-/he does not
necessarily know in each instance and at each point in time whether a transaction will
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be double-spent, s-/he has an incentive to preventatively argue for his variant of reality
by publishing a found weak solution to the POW problem.

However, should this incentive turn out to not be strong enough, a more direct
incentive could be - and this is rather a discussion than a proposal - reward sharing
amongst WPOW blocks. The approach would be to add another soft fork that demands
a miner share his block reward among all the delta blocks that make up the strong chain
tip that s-/he found.

It should be without question that any consensus change should only be implemented
with strong support from the userbase, developers and general members of the ecosystem
and in case a more comprehensive instant confirmation solution is deemed really desirable.

As a side note, a potential further tweak to a delta block scheme could be to estimate
the desired delta block difficulty and the WPOW threshold dynamically and adjust it
independently from the strong blocks difficulty.
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S Strong block of height S

W Weak delta block with 
weak POW W
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Figure 2: Relation of the weak and strong block chains / trees in Storm.
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4 Implementation details

The author believes that the only way to get a complete picture on the potential pitfalls
and roadblocks for a moderately complex change is to code a prototype and test and
review it. What follows are the implementation details of the above high level scheme
for a prototype implementation on the Bitcoin Unlimited full node software.

Unmanageable runtime or space complexity increases, as well as code complexity,
would be a potential “show stopper” for this scheme and the expected complexity of the
most important heuristics and algorithms in the Storm system is discussed below.

4.1 Persistent data structures

As weak blocks are strong blocks except for their proof-of-work measure, it follows that
merged blocks have to still behave, in addition to the proposed stacking of smaller delta
sets, like ordinary CBlock data in the node implementation. Most importantly, the full
view of the set of constrained transactions, and not only the independent (net) delta
block representation needs to be available in the full node software.

A naive way to construct merged blocks internally would be to keep and update the
full transaction set referred to by each delta block. This, however, is prohibitively costly
in terms of memory as well as processing time, as the time as well as space required for
each merged block would be on the order of a full block, thus creating space and time
requirements of the order of O(N2) (for N transactions).

A much better way is to create a persistent data structure[12], in this implementation
a persistent binary tree to store a view of the full transaction set for a merged block,
but share as much as possible with other merged blocks. In the current prototype/demo
implementation, this is done by using the tree that is the biggest ancestor (in terms of
numbers of transactions) as the base for building a given merged block transaction set
and only adding the missing delta sets on top. This reduces space (and time) complexity
of delta blocks to something managable, about O(N logN) in the big picture. Details
on this approach are given below.

The persistent data structure has been implemented as a template container persis-
tent binary tree in persistent map.h, with a very loose adherence to the C++ std::

container data types. Note that no balancing of this tree has been implemented and if it
or a similar one is extended to store Merklix data as is, is also not desirable.

To have a better picture of how persistent data is used and reused in the prototype
implementation, see Fig. 3.

4.2 Merklix trees and transaction order

For the Bitcoin ABC implementation, their lead developer Amaury Séchet has proposed a
road map to generalize the current Merkle tree that is used to encode a given transaction
set in a cryptographically secure way to “Merklix” trees[2], which can be formed in any
order and can (and generally will) be unbalanced. This should allow O(logN) access
operations on the tree and would make efficient merging of competing weak blocks
possible.

Alternatively, without Merklix trees available, it might make sense to generalize the
canonical transaction ordering (CTOR) to any order, as to allow to stack partial Merkle
trees together in an efficient way.

It should be duly noted here that, in the current demonstration implementation,
the whole merkle tree is recalculated for a delta block, which is O(N2) for N total
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Spent set
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…                         
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…                         

Spent set

Transaction set

Incompatibility set

Merged weak block
(Memory representation of 
delta block)

Implemented as 
persistent map data  
structures each

Each persistent map in 
the descendant block is 
an extension of the 
respective biggest map in 
one of its ancestors.

Weak
ancestors

extends

Figure 3: Current use of persistent maps in the prototype implementation. (The
incompatibility set that is shown here, that would track mutually incompatible weak
blocks, has not actually been implemented yet). An additional option might be to make
the mempool a (persistently shared) part of a corresponding merged block.

transactions and thus not sustainable in the long term. With a better approach, it seems
straight-forward, however, to reduce this to O(N logN).

4.3 Compatibility (merge) checking

As per the above definition of being able to merge two delta blocks, the individual
transactions from their respective transaction sets have to be checked for compatibility.
To save work, it seems best to test a delta set for compatibility against an already merged
block. In case of delta blocks and net delta blocks, it is thus a good idea to test a delta
set vs. the full transaction set of a block. With an efficient logN - way to check for
spend outputs by other transactions available (see below), testing compatibility for a
delta set of size n vs a bigger set of N transactions in the merged block then becomes
O(n logN). To allow this efficient checking, a spend-index for each delta block is kept as
well, which maps each spent transaction output to its respective spending transaction
ID (TXID). This spend index is shared in the same way as the transaction set using the
persistent binary tree container among multiple delta blocks. Only spends since the last
strong block are tracked in this partial spend-index.

Now, potentially multiple delta tips have to be tested against each other and they
might contain multiple independent delta sets, which is of square complexity still. For d
delta sets, n transactions per delta set and N transactions per strong block, a total of
O(d2n logN) tests need to be made.
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A persistent map-based approached can be further used to efficiently keep track of
the mutual compatibility of delta blocks with each other as well, though this has not
been implemented yet.

Excluding the problem of incompatibility due to double-spends for a moment and
with all miners following the expected incentives, they will greedily merge delta sets that
are floating around (to achieve most WPOW for their mined block), so that each emitted
block by a miner will collapse the available delta tips to just one by merging them all.
The number of different delta sets d to check for a merging, can thus be expected to be on
the order of the network diameter in time L, divided by emission time t of weak blocks.

This means that the total complexity for merge testing above becomes O
((

L
t

)2
n logN

)
.

This clearly shows that there is going to be a superlinear strain on the network that
increases with higher weak emission rates. Fortunately, it seems that the emission rates
for a good customer merchant experience (seconds) are similar to the network diameter
(seconds), so this squaring behavior is not expected to be a large problem.

Miner adversaries Although simulations of well-behaved miners as well as basic
intuition say that there is a probabilistic collapse of the delta tree to a single ancestor
every so often, it is not at all a given that this is going to be the case under adversarial
conditions. For the time being, it can be expected that attackers can overpower the BCH
chain in the short term, and the implementations need to deal with that (however, the
current demo implementation does not!). An attacker could, for example, create a lot
of mutually incompatible delta blocks, creating a situation where mutual testing would
be of square complexity. A relatively straight forward way to address this, however,
should be to implement a heuristic at a miner that only looks at the top couple delta tips
for potential merging and a node that receives delta blocks checks them with parallel
validation and maybe even deprioritizes blocks that have a lot of ancestors. This way,
blocks that are intentionally made like this will have a very hard time to win the beauty
contest while not overly impacting full node operation. This would be similar to the way
BU principally addressed squaring complexity in some aspects of block validation.

Double-spending adversaries The problem of a miner including double-spending
transactions in a delta block is handled similarly to the above miner-adversary scenario.
If a delta block cannot be merged with what the majority thinks is the otherwise valid
delta DAG, it will have correspondingly high risk of being orphaned.

Also, miners could develop tools to assess the likelihood of doublespends over time.
For example, miners could go and predict double-spending likelihood from past behavior
of given outputs.

The best strategy for a miner to decide on whether and when to include a transaction
is out of the scope of this document. It seems that this is might be an area where a
good game theory approach could make sense, but like all potential areas for application
of game theory, it could also turn out to be simply too complex in the real world to
approach it this way. It is also an area where miners can and should compete to find
good solutions.

That all said, a way for a miner to approach the problem would be to simply wait
a certain while before including a transaction in a (delta) block. A constant wait is
discussed in the simulation section.

Randomizing this wait would make it hard for a double spender to time his or her
double spend. A simple example function that decides inclusion wait time and as a
function of transaction fee would be to select a wait time from an exponential distribution
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(plus potentially a per-miner constant) that has an expected value simply proportional
to 1

TX fee , chosen at the miner’s discretion and in a competitive way, optimizing his or
her income. It seems appropriate to use an exponential distribution corresponding to
a memory-less process, giving any potential adversary the least amount of information
here.

Notably, the detailed fee structure and complex dynamics in this regime also further
strengthens the idea of a natural fee market.

4.4 Network messages

Currently, solved delta blocks are send in a fully expedited mode, which simply means
that a full net delta block is sent to all connected nodes whenever it is found, and it is
forwarded on all links except the receiving one when it is received the first time. This
reduces the expected delta blocks latency by up to a factor of two compared to a inv,

getdata-style approach of announce- and request rounds as is currently largely used in
bitcoind. But this approach is likely prohibitive in terms of bandwidth used when used
on the real network.

One area which is out of the scope of this document and which will likely considerably
improve all (including delta blocks) of the various “instant” confirmation approaches
is the implementation of expedited (see also section 4.6) transmission modes for delta
blocks as well as transactions.

Two message types for delta block propagation are defined at the moment. One is
CNetDeltaBlock which is the serialization of a delta block, meaning the set of transactions
in the delta set plus coinbase with weak ancestors and block header. See Fig. 4.

NetDeltaBlock

Block header                   HPB

 Coinbase TX   anc   anc     ...

Previous strong block

Previous weak delta block

H
P

B
: hash

P
revB

lock

Previous weak delta block

Included TXIncluded TX
...

Included TX

Delta set
Included TXN

Graphene IBLT-encoded
64-bit TXN hashes of delta 
set

Can be empty
for 
‘full delta block’

Figure 4: Format of a NetDeltaBlock network message. anc denotes pointers to weak
ancestors and HPB is the hashPrevBlock. The included transactions are either included
in full or as part of the IBLT-encoded short-ID graphene set.

The delta set of transactions is optionally (and by default) graphene encoded, meaning
that a Bloom filter + IBLT combination is used to transmit short 64 bit hashes of the
included transactions. Alternatively, transactions can be sent in full. The list of full
transactions or the IBLT section of the message are allowed to be empty.
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In case there are missing transactions in a net delta block or a net delta block
is missing, a CNetDeltaRequestMissing message is sent (Fig. 5), which includes the
corresponding hash of the delta block and any missing short transaction IDs. Alternatively,
the requested list is empty to indicate requesting transmission of a non-graphene-encoded
CNetDeltaBlock.

NetDeltaRequestMissing

64bit short TX hash
64bit short TX hash

...

64bit short TX hash

...

Figure 5: Format of a NetDeltaRequestMissing network message.
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4.5 Transaction confirmation lookup

One of the operations potentially taking up a lot of time is the tracing of transactions
and the lookup of the number of weak confirmations a transaction has on one or all
delta block chains. The straight forward implementation is to check all delta blocks
in the DAG to see if it contains the particular transaction, which is O(d logN) (with
d delta blocks, N transactions per strong block). This is acceptable for a few look
ups (single independent merchant node) but will quickly become an O

(
n2

)
problem if

the number of transactions tracked become a significant fraction of the full set in the
strong block. To avoid this, the confirmation calculation can be simplified by stopping
when a given number of confirmations that are deemed safe is reached. More complex
schemes that simplify the calculation of the point of inclusion for a transaction from O(d)
to about O(log d) and would allow an efficient exact calculation seem feasible though.
They are also probably not needed, given the low transaction exclusion risk after a few
confirmations. However, the relative complexity of this operation hints at it being a
good idea to keep the block chain just a single chain overall, except for the short term
delta blocks / weak blocks instant confirmation regime.

It therefore also seems to be a good idea to keep delta blocks ephemeral; in the
current demo implementation, they are a memory-only data structure and a freshly
started node will start without any delta blocks known to it. This is also the meant to
be the real-world operation mode.

4.6 Expedited propagation

Bitcoin’s network protocol right now works to a large extent by an exchange of this
sort: “Do you have X? No, please give me X. Ok, here’s X.”. This is a handshake that
adds double the roundtrip latency for each hop in the Bitcoin network, a bottleneck
which can slow down any instant confirmation scheme by a factor of two. A simple
heuristic that has been investigated loosely is to always propagate transactions to each
connected node and receive rejects, and stop when a propagating node finds that there
is a large amount of redundancy when forwarding transactions from one to a another
node, tracking redundancy for pairs of (sending-node, receiving-node). Work is underway
by Peter Tschipper and Andrew Stone to implement automatic expedited transaction
propagation via a different scheme. Finding and implementing a good general expedited
propagation heuristic, both for (delta-)blocks as well as transactions is out of the scope
of this proposal. The simulation in the next section assumes such an efficient expedited
propagation scheme has been implemented.
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5 Simulation

An initial python implementation of a discrete event system to simulate the propagation
of transactions and delta blocks has been ported to a self-contained C++ program with
no external dependencies (< 1000 lines). In the author’s hope, making this easy to
understand, run, and modify simulation available will help establishing Storm’s value.

The simulation is single-threaded since a typical run takes up to dozens of minutes
so far and sufficient parallelism can be achieved by just running different scenarios in
parallel.

This simulation is available at the time of publication of this document at github.

com/awemany/storm-sim.
It can be compiled, assuming a recent standard C++ compiler, with just a single

call to make after cloning the git repository and filling in the deltablocks.h header
file with appropriate values using the deltablocks.h.tmpl template. Alternatively, tue
runsim.py python file can be used to automate this.

The simulation is a very simplified view of the network, hopefully covering just enough
complexity to answer the main questions regarding delta blocks while not dropping (too
many) pernicious corner cases under the table. In the analysis of simulation results, no
error bars are given (but statistical error bars can also be easily estimated as most results
adhere to Poisson statistics or binomial statistics that can in turn be roughly simplified
to Poissonian count statistics). The simulation is considered to be mostly qualitative
and at best fit for arriving at order-of-magnitude estimates. To be relatively certain
to catch the corner cases, more detailed simulations should be made with real Bitcoin
implementations in a test network that is delta Blocks enabled. However, this simulation
is a valuable base to implement further qualitative analyses of different implementation
approaches. The next section 6 contains a discussion of a very simple such setup using a
deltablocks-enabled bitcoind and a comparison to the simulation code discussed here.
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5.1 Transactions

In the simulation, transactions are just pairs of (txnnumber,TXID). The txn number is
a global, unique ID assigned to each transaction thanks to its omniscient point-of-view of
the situation. Double-spends are modeled as transactions with same TXID but different
txn numbers twice. The transactions in the simulation do not have inputs and outputs,
and instead of an input double spend, the whole transaction is ‘a doublespend’ which
should still sufficiently capture the transaction doublespending problem without getting
bogged down in reimplementing input/output selection. Consequentially, all transactions
are also of the same size.

5.2 Blocks

Blocks are just delta blocks, as above. Strong and weak blocks are not differentiated,
everything is a delta block. The current strong-blocks-only without deltas situation can
be simulated as a degenerate case of the delta blocks with just a single ancestor chain
and a block time of 600 s. Similarly, weak blocks in the sense of Rizun’s Subchain paper
can be simulated with a single chain and block times � 600 s.

5.3 Nodes and links

Nodes are connected through network links, and at the moment it is assumed that each
connection is bidirectional, with a link of the same capacity in each direction. It is
also assumed that the link bandwidth is the bandwidth per node-to-node connection,
which is akin to the bandwidth of one half of a TCP connection (one direction) and not
the bandwidth of a whole network link. (Probable) link congestion is detected in the
simulation by checking for runaway send buffer sizes.

5.4 Parameters

The simulation time granularity is set to 1 µs, which should be detailed enough to capture
all behaviors yet makes the simulation time fit into a 64bit integer for any realistic
simulation run time.

In Tab. 1 the default parameters for the simulation are given. They have generally
been selected to be realistic and still give reasonable good results. If no other, more
specific values are given, these are the parameters that are used throughout here. Of
course, the reader is invited to try the simulation with different parameters. This list
is in the same order as the parameters that can be set in the file deltablocks.h so it
should be reasonably easy to adapt the C++ for different scenarios.

It should be noted that both the simulation here as well as the full node implementa-
tion assume a full relay of all doublespending transactions (or at least a doublespending
pair for each input that is ever doublespend).
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Parameter Value Comments

Weak block time
tw

(
=: 1

rW

) 600 ms One thousandth the nominal strong block time.
Have exponential time distribution. Generated
at any network node with equal chance.

Transaction rate
rTX

10 s−1 Exponential time distribution. Injected into any
network node with equal probability. This is the
transaction rate including all doublespends.

Node connection
scenario

random
links

For each simulation run, a random set of links
is generated between the nodes. The resulting
graph is checked to connect all nodes to each
other and is regenerated if that is not the case.

Number of nodes 10 Number of nodes in the simulation. All
nodes behave equally, except for selected debug-
ging/tracing functionality (see below).

Number of links 30 Number of links between nodes. A link is a
bidirectional connection between two nodes.

Mean link latency 250 ms Mean latency of a link. Link latencies are picked
from a Gaussian distribution (with clamped floor)
upon simulation startup.

Latency σ 100 ms Width of the link latency distribution

Latency floor 50 ms The floor of the link latency distribution. No
latency below this value is allowed.

Mean link band-
width

200 kB s−1 The mean bandwidth of a link. Link bandwidth
is as well drawn from a Gaussian distribution
upon simulation startup and clamped at the
lower end.

Link bandwidth σ 20 kB s−1 The width of the link bandwidth distribution.

Link bandwidth σ 150 kB s−1 No link bandwidth is allowed to fall below this
value.

Transaction size 223 B Size of a transaction in the simulation. This
value is used solely to calculate bandwidth and
latency of transaction propagation.

Transaction size
in a delta block

100 B Size of a transaction in a delta block, used for
block propagation estimates. This value is lower
than the above to account for efficient block
propagation schemes. The details of the various
efficient block propagation schemes are subsumed
in this simple ratio.

Ancestor size in a
delta block

100 B Amount of data (for network traffic calculations)
an ancestor link takes up in a delta block.

Empty delta block
size

200 B Size of an empty delta block (for propagation
calculations).

Block rerequest
probability

0.15 Probability with which a node re-requests a delta
block from a sending node, simulating decode
failure. Multiple failures are possible and occur
with corresponding multiplied probabilities.

Block request size 100 B Size of a (re-)request message for re-requesting
a delta block. For network calculations.

Table 1: Default simulation parameters (continued)
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Doublespending
fraction fDS

10 % Fraction of transactions that are doublespent. A
doublespend is injected simultaneously at two
random nodes in the network (it can happen that
the same node is selected).

Drop double-
spends for mining

true If a transaction is detected as a doublespend
locally at any node, it is excluded from block
building.

Relay double-
spends

true Doublespends are relayed just like normal trans-
actions through the network, ensuring that all
nodes get a full picture as fast as possible.

Minimum transac-
tion age for block
inclusion

0 The minimum amount of time a transaction has
to spend in a node’s mempool before it is in-
cluded in any mined block.

Maximum trans-
action age for
block inclusion

72 s Maximum age of a transaction in a node’s mem-
pool - after this it is evicted. This serves es-
sentially as a garbage-collection threshold for a
node’s mempool. Note that the mempool state
is also used to determine transaction forwarding
in the simulation. It is thus necessary that this
value is a lot larger than the end-to-end prop-
agation time in the network so as to not form
propagation loops!

Use deltablocks
method

true Should the deltablocks building method be used?
Changing this value to false in the simulation
causes just at most a single ancestor to be in-
cluded in a deltablock, thus degrading the simu-
lation back to the ordinary weak blocks case.

Transaction trac-
ing probability

1.0 Probability of tracing a transaction’s detailed
fate at a selected node.

Transaction trac-
ing node number

0 Node that the transactions are traced at. Just a
single node is selected for efficiency. As all nodes
are otherwise equal, this value should not matter
in the default random network graph scenario.

Simulated time 600 s Real time that is simulated. One nominal strong
block period.

Table 1: Default simulation parameters
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5.5 Results

5.5.1 Orphan rates

The key metric to look for when looking at the impact of delta blocks on the overall
safety of the system is the orphan rate. Because an adversary should be assumed to be
well-organized internally (low orphans for himself) and also in the worst case in control
of all double spends that appear on the network, it is important to make sure that the
honest miners do not put a large fraction of blocks and thus hash power to waste. As
incompatible (doublespending) delta blocks cause a certain orphan rate, the orphan rate
furthermore is a bound on the number of successful doublespends than can happen in
the network.

For a total number of observed blocks N and n blocks in the most-WPOW chain tip,
the (total, network-wide) orphan rate ro as used here is defined as:

ro =
N − n
N

.

For a couple key parameters from the above table, the orphan rate for varying that
parameter is shown in Figures 6 to 10.
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Figure 6: Total orphan rate vs. weak block rate. Merging of deltablocks are in blue
whereas the simple stacking of weak blocks is in red.

Considering weak block time In Fig. 6, the orphan rate for varying weak block
times is shown, both using delta blocks as well as ordinary weak blocks. This shows the
key advantage of delta blocks. By merging compatible but competing blocks into a single
confirmed transaction set, a lot less POW is wasted compared to the straight-forward
weak blocks model. All blocks that do not mine conflicting doublespends can be merged
into a single set, allowing to extend delta blocks to a faster emission regime than before.
Each weak block has an otherwise fixed time window for an incompletely-propagated
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doublespend to be included, which results in a larger rate of conflicting weak blocks for
higher emission rate, which is the linear (least squares) fit in the above plot.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Minimum mempool age [s]

0

2

4

6

8

10

12

14
Or

ph
an

 ra
te

 [%
]

Orphan rate vs. mempool minimum age

Figure 7: Orphan rate. vs. mandatory wait time before inclusion. Note: For this
scenario, the mean link latency has also been increased to 1 s to actually be in a regime
where a noticeable amount of orphans due to conflicting transaction sets occur. The
default parameters from above are too optimistic to show the influence of this extra wait.

Considering minimum waits In the delta blocks model, orphan blocks are produced
only when the blocks cannot be merged into the main delta tree. This is either due to an
incompatible, doublespending transaction included in the block or as miners refrain from
considering a competing chain for performance reasons (e.g. during an attack that tries
to slow down the network with expensive compatibility cross-checks). A very simple way
to make sure that no doublespends are included in a block is to simply throw out all
known doublespending transactions before building blocks. This has been implemented
in the full node code as well as the simulation. This however, still leaves a timing gap
for doublespending transactions to be injected simultaneously into different parts of the
network and a doublespending attacker that exploits the finite propagation time might
still be able to get a doublespend to confirm. A very simple defense against this in the
delta blocks model is to let transactions age in the mempool before even considering them
for inclusion. Waiting for the end-to-end propagation time in the network and assuming
that all doublespends are forwarded makes any doublespending attack infeasible.

For a transaction with a sufficiently high fee, a miner might be compelled to take
the risk of including that transaction earlier, which might correspond to a natural fee
market for (very) fast transactions.

In Fig. 7, the orphan rate is shown for different minimum inclusion waits for the
given simulated network topology. In this example, a wait of just over one second
makes succesful doublespends highly unlikely. As mentioned above, to avoid giving
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doublespenders the chance to time their transaction injections just barely “right”, it
might make sense to either replace the fixed wait with a draw from an exponential
distribution or add an exponentially distributed wait on top, potentially scaled by the
fee rate that the transaction would pay. A further potential enhancement to fend off
attacks where lots of doublespends are injected into the network would be to make this
wait depend on the observed orphan rate in the network.

Overall, the delta blocks approach works best when doublespends are avoided as
much as possible to be even considered by miners, which is an alignment of incentives
with an overall well-operating system.
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Figure 8: Total orphan rate vs. doublespend fraction.
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Figure 9: Total orphan rate vs. transaction rate.

Considering doublespending and transaction rate In Fig. 8 and Fig. 9, the effect
of the doublespending fraction respectively the transaction rate (at constant doublespend
fraction) on orphan rate is shown. Not surprisingly, both show the same (assumed to be
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linear) behavior at low orphan rates. Any single included doublespending transaction will
create an orphaned delta block and as it is expected the likelihood that this occurs during
delta block building scales linearly with both these variables. As these two variables are
most easily influenced by an attacker, it is most important to make sure that they have
the least effect. The aforementioned minimum miner wait is a viable approach to tackle
this as well.
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Figure 10: Total orphan rate vs. mean link latency l.

In Fig. 10, the effect of mean link latency and thus network diameter on the orphan
rate is shown. This parameter is one of the most important to a viable delta blocks
system. The line shown in the plot is a l2 least squares fit to the simulation. The
assumed explanation for the squaring behavior is that l scales both the time window for
a doublespending opportunity due to transaction propagation as well as rate at which
competing blocks will appear on the network (with a given risk of containing conflicting
doublespends).

Overall behavior For small orphan rates, the simplified overall orphan rate is thus
expected to vary roughly by the above parameters (except miner wait!) as:

ro ∼ fDS · l2 · rTX · rw.

In the perfect case of always bounded and complete propagation of all transactions,
the miner wait can be expected to always push orphan rate to zero if it is just long
enough. The exact shape of the orphan rate vs. minimum wait curve depends on the
network topology.
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5.5.2 Merchant risk

The property that is key to answering the viability of delta blocks as an actual instant
confirmation solution is how well and how fast it will allow a merchant to make risk-
informed decisions on incoming customer transactions.

Notably, it is assumed that all miners follow the weak consensus and that the
transaction in question has sufficient fees to entice the miners to mine it. The additional
risk involved if any of those two conditions are not met is not further discussed here.

From a merchant’s point of view, there are several aspects that s-/he can look at to
estimate the likelihood of final transaction confirmation and thus a successful sale.

The merchant is always assumed to observe any potential doublespends of the
transaction and react to them accordingly, independent of delta blocks. Should a
merchant observe a doublespend for the transaction in question, he can almost certainly
assume a fraud attempt. In case that no doublespend is initially observed, the deltablocks
weak consensus scheme will eventually give him the certainty that the transaction paying
him is not doublespend later on. This is the scenario that is addressed by deltablocks.

The first metric would be to observe the weak confirmations piling up on the transac-
tion in question. As blocks can potentially be orphaned and replaced with conflicting
(doublespending) ones, the likelihood for final inclusion, given a number of weak confir-
mations, is a quick and easy way to estimate a transaction’s fate from the number of
observed weak confirmations.

Then, it is also important for the miner to know how long it will take for the given
number of confirmations to show up (since he received the transaction).

Combining those two measures will give a transaction inclusion certainty estimate
over time.

To answer these questions, the simulation has been instrumented such that transaction
confirmations can be traced at the selected node (#0). When a transaction first shows
up at that node in a block, its inclusion (or not) in the longest chain as per the discussed
maximum WPOW rule is tracked.

Scenario x = 1 2 3 4 5 6 7 8

WB, 600 ms 1.3h 0 0 0 0 0 0 0
DB, 600 ms 1.0h 0 0 0 0 0 0 0
WB, 100 ms 9.2h 1.6h 0.5h 0 0 0 0 0
DB, 100 ms 4.0h 3.0h 0.8h 1.1h 0.1h 0 0.1h 0

Table 2: Number of transactions that got confirmed x times in the longest chain but did
not make it into the longest chain eventually. DB: Delta blocks, WB: Ordinary weak
blocks. Approximately 6000 transactions total in each run, as per the default simulation
parameters.

Non-final confirms For four scenarios, for 100 ms as well as 600 ms and both delta as
well as ordinary weak blocks, the likelihood that a transaction confirm is observed while
the transaction does not eventually end up in the most-WPOW tip is listed in Tab. 2.

It should be noted that these numbers are this surprisingly low as those of the
approximately 600 doublespends made in total, most are discovered in time before the
block is emitted and are not considered further at all. Any transaction that is not
doublespend and not in the longest chain is included with very high likelihood in the
longest chain (due to the -in this context- comparatively long mempool timeout of 72 s).
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Furthermore, a doublespend has to be included in at least two competing weak blocks
before showing up in the above statistics.

In general, these figures hint at tw = 600 ms being a good compromise for the
given other simulation parameters. It further shows that waiting for just three weak
confirmations in either 600 ms scenario is enough to be certain with very high likelihood
(99.9%) that a transaction is going to make it into the strong block. And this is for a
comparatively high double-spending rate of 10%.
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Figure 11: Confirmation times for tw = 600 ms.
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Figure 12: Confirmation times for tw = 100 ms.

Confirmation times In Fig. 11 and Fig. 12, the time to reach a given number of
confirmations in the delta block scenario is shown for a delta block time of 600 ms and
100 ms, respectively. Even if the simulation parameters are considered overly optimistic,
reaching sufficient confirmations within a few seconds still seems realistic.

With the above likelihood of a confirmation being non-final taken into account, this
shows that the proposed scheme should allow merchants to accept transactions as final
within seconds while accepting a doublespend risk in the h-range. And this does not
include the other approaches a merchant can use to mitigate transaction risk, such as
(0-conf) forfeits or knowledge about the customer.

26



6 Full node test

Early, preliminary tests have also been made with the C++ implementation for the BU
full node that is now available as a work-in-progress pull request to Bitcoin Unlimited.
Writing this preliminary implementation is first and foremost a check whether and which
surprising complexity roadblocks might turn up during a production implementation.

It should be noted that the current implementation has a few drawbacks still. To
simplify testing, it has also not been written with having all adversarial conditions
properly in mind and before it is used in production, it needs to be heavily reworked
and tested accordingly. It contains various known bugs.

Furthermore, and impacting performance for the tested parameters somewhat, the
Merkle tree is still fully rebuilt for each and every delta block that is being produced,
which means that there is a case of O(n2) complexity (with n transactions) still.

Delta block building likewise is not optimized yet and iterates over all transactions
in the merged block to find those that are included already, creating another O(n2)
behavior.

6.1 Setup

With the above caveats, a very simple test scenario, consisting of three nodes running on
the same host has been set up:

Node2 ↔ Node1 ↔ Node3

The node is a decent server with 256 GiB of RAM and a 20-thread Xeon
CPU at ≈ 2.5 GHz clock frequency. Latencies between the nodes 1, 2 and 1, 3 have
been simulated to be 500 ms each2. All three nodes are set up to generate delta blocks
with equal rate (1 Core each).

The parameters for the chosen setup are shown in Tab. 3.

Simulation comparison. A run of the discrete event simulation from the last section
has been set up as well, and set to be as close as possible to the bitcoind test. This is
to have a comparison of the simulation with a more realistic test of real code. Differences
in setup are noted below. In contrast to the full node setup, the simulated links have
been set for a default delay of 1 s each, to account for the fact that the simulation
simulates full expedited transaction propagation. Though both this full node test as well
as the simulations from the last section are in a more general sense simulations of a real
network, using the compiled bitcoind is called the full node test and only using the
previous discrete event simulation is called “a simulation” herein. Comparison plots for
the simulation can be found at the end of this section.

2 Using the Python script that is available here: https://superuser.com/questions/789420/

how-do-i-delay-tcp-traffic-on-a-socket.
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Parameter Value Comments

Delta block time tw 2.16 s Set to 600 ms. Due to various reasons
(chain nol difficulty adjustment intervals, dif-
ferent number of CPUs during different tests,
etc.) the actual value is different. Furthermore,
due to the non-constant block building times,
this average value also varies with a delta blocks
merged size. The simulated delta block time has
been set to 2.16 s as well.

Total transaction rate rtotal 5.44 s−1 Transactions come with approximately Poisson-
distributed timing and arrive at any of the three
nodes3. This is the measured transaction rate
arriving at the nodes for the selected [t0, tmax] as
discussed below.

Double spend fraction 10% Here, this is the chance to emit a double spend.
For each doublespend, two transactions are in-
jected into the network.

Mempool expiry time 72 s This very fast mempool expiry time (seconds,
not hours!) has been set as to minimize the
non-linear effect a large mempool has on block
building. Note that the mempool keeps double-
spend transactions until they expire.

Deltablock retransmission likelihood 15 % This value is only set for the simulation and
corresponds to the retransmission rate that has
been observed during the full node run.

Table 3: Most important parameters for simple full node test.

3Approximately Poisson-distributed as injection rate limit of the python-based transaction injector
start to show at this rate.
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6.2 Results

In Fig. 13 (Fig. 14 for the simulation), the WPOW of the generated delta blocks is
plotted vs. time for parts of an example run with 5 arriving strong blocks in blue. If not
otherwise noted, data from Node1 is shown here and below. It can be seen that due to the
O(n) behavior in block building speed, delta block building gets progressively slower and
slows down the node so much that eventually it cannot keep up (time span t > 10 000 s).
This behavior seems furthermore not consistent, hinting at further performance bugs in
the code. Therefore and for all preliminary views of transaction confirmation behavior
below, only data up to tmax = 5200 s is further analyzed. The red curve shows the delta
set size of each handled delta block.
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Figure 13: WPOW and delta set size over time for blocks arriving at Node1.
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Figure 14: WPOW and delta set size over time for any blocks generated in the simulation.
There are no returns to zero for the WPOW graph as strong blocks are not simulated. This
is the desired, eventual (almost) constant-time behavior for the full node implementation.
5200 s were simulated to match the full node test.
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Figure 15: Transaction confirmation probability over time for those transactions that
are included in delta blocks (unconfirming doublespends excluded) in blue. The dashed
black line is the (better) simulation result. The discrepancy and worse performance of
the full node implementation is likely explained by the non-optimal block building.

From the 2nd strong block as visible in Fig. 13, the POW efficiency can be estimated:
Maximum WPOW is 731 for a total of 777 weak blocks, yielding an efficiency of
ηFN = 94.1 % of all WPOW included in the final strong block. For the simulation, there
are 2416 weak blocks mined total with the top block having 2306 WPOW, thus yielding
a roughly comparable ηsim = 95.4 %.

6.3 Transactions

In Fig. 15, the confirmation probability for any confirmed transaction in this example
run is shown. Tab. 4 lists the fate of various selected transaction subsets in this delta
block run. Most importantly, the last few lines lists the probability that a transaction
can be deemed to be finally included in the strong block chain for a given number of
weak confirmations, as also discussed in the preceding simulation section. In this context,
a transaction is doublespend if a conflicting transaction has been made and thus exists
anywhere in the network.
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Transaction set Value Sim. Value Comments

Total number 28 296 28 188 The total number of trans-
actions in the selected time
range.

Ever confirmed 24 064, 85 % 23 867, 85 % Transactions that are ever con-
firmed in a delta or strong
block.

Finally confirmed 23 894, 84.4 % 23 752, 84.3 % Transactions that are finally
confirmed in a strong block.

Doublespends 5171, 18.3 % 5098, 18.1 % Doublespend transactions, as
per the set rate.

Ever confirmed
doublespends

939, 3.3 % 779, 2.8 % Doublespend transactions that
are included in at least one
delta block.

Finally confirmed
doublespends

769, 2.7 % 665, 2.4 % Doublespend transactions that
are included in a strong block.

Finally confirmed
non-doublespends

23 125, 81.7 % 23 087, 81.9 % Regular transactions that are
included in a strong block.

Not finally
confirmed non-
doublespends

0, 0 % 3, 0 % Regular transactions that are
not included in a strong block.
Essentially regular transac-
tions that “fell through the
cracks” and are dropped from
the mempool too early.

Final inclusion
fraction after 1
confirmation

28 217 99.72 % 28 073, 99.59 % Fraction of transactions that
are also finally included in a
strong block after having seen
a single confirmation.

Final inclusion
fraction after 2
weak confirma-
tions

28 276 99.93 % 28 162, 99.91 % Like above.

Final inclusion
fraction after 3
weak confirma-
tions

28 293 99.99 % 28 184, 99.98 % Like above.

Final inclusion
fraction after 4
weak confirma-
tions

28 294 99.99 % 28 186, 99.99 % Like above.

Final inclusion
fraction after 5
weak confirma-
tions

28 294 99.99 % 28 188, 100 % Like above.

Final inclusion
fraction after 6
weak confirma-
tions

28 296 100 % 28 188, 100 % Like above.

Table 4: Fate of transaction subsets in the full node test.

31



The high likelihood of final inclusion demonstrates the overall workability of the delta
block scheme for quickly reaching consensus on transaction inclusion, to give merchants
the tools needed to estimate doublespending risk.

Furthermore, these values appear to be compatible in general to the results from the
previous simulation section. Very obviously, however, work is still necessary to implement
the larger structural changes necessary to bitcoind to support constant time delta block
generation and to speed up delta block generation to be closer to the more optimistic
simulation values.
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Figure 16: Delta block propagation times. Blue shows t1 − t2 difference for arrival time
t1 at Node1 and t2 arrival time at Node2, red the difference t2 − t3 with t3 arrival time
at Node3. 3 respectively 68 outliers not shown in histograms. All blocks propagated
within 30 s.
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Figure 17: Simulated delta block propagation times, as in Fig. 16. The “real” full node
setup has more variance in the effective block propagation times, smearing the peaks at
multiple round trips for deltablock retransmission out.

6.4 Delta block propagation

In Fig. 16 (resp. Fig. 17 for the simulation), delta block propagation time histograms
between Node1 and Node2 as well as between Node2 and Node3 (through Node1 as the
intermediate hop) are shown in blue and red, respectively. The peak at 0 s in the latter
histogram is from delta blocks originating from Node1 and reaching both outer nodes at
the same time. It can be seen that the expedited mode of propagation that has been
implemented works most of the time and in principle, though there is a considerable
number of retransmissions and extreme outliers.

33



7 Conclusions

While Storm is far from being a ready-to-use and fully specified implementation, the
demonstration code and simulation hints that this approach is likely viable in principle
for instant confirmations and that it is in some ways superior to discussed alternatives.
Further exploration and comparison of this method to competing approaches seems
prudent. One area to emphasize here is further testing and analysis of delta blocks
propagation when using probabilistic protocols such as Graphene to make sure that
intermittent set reconciliation failures or other communication problems do not allow
for a “long tail” runaway failure of weak blocks propagation in any realistic real world
scenario. Furthermore, adversarial cases have to be analyzed in detail.

It should also be noted that there is some rough similarity to Ethereum’s GHOST and
uncle system[10, 11]. The approach discussed here, however, deviates in many ways such
as implementing transaction sharing in addition to reward sharing as well as handling
all blocks in a symmetrical way.

There have been repeated calls to shorten the block time on BCH. However, using a
weak blocks solution like the one discussed here has several advantages to a shorter block
time: It touches neither the emission schedule nor the other core parts of the system
and lives (to a large degree) side-by-side to the current 10-min strong block propagation
model.

Furthermore, the incentive to make, publish and follow delta blocks is due to the
proposed small and narrow soft fork that can be undone relatively easily in case of an
emergency (by just ignoring all weak blocks by the majority of hash power), such as an
unforeseen bug or incentive problem on the live network. The effects of this would be to
fall back to the current mode of operation.

Aside from necessary test-net testing, weak blocks can also be enabled and tested on
the live network with only a fraction of the BCH miners particpating. This might also
allow further tweaks to the parameter set before switching to “production mode”.

In the view of the author, these properties fit best with the desired conservative, slow
and steady evolution of the core protocol.
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